RQ etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
RQ etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

22 Eylül 2015 Salı

How we lose weight: Oxidation of carbohydrate & fat in the body.



1. Oxidation of Carbohydrate in the body.

Glucose is C6H12O6, or 6(CH2O)

6(CH2O)+ 6(O2) → 6(CO2) + 6(H2O) + energy

Oxygen is inhaled. Carbon Dioxide is exhaled. Water is lost in breath, wee, poo, sweat & other bodily fluids.

As 6 molecules of Oxygen produce 6 molecules of Carbon Dioxide, the Respiratory Exchange Ratio (RER) is 6/6 = 1

Converting molecular weights into their gram equivalents, 180g of Glucose combines with 192g of Oxygen to produce 264g of Carbon Dioxide plus 108g of water plus ~3,012kJ of energy. I'm using kJ rather than kcal, as the human body expends energy as mechanical energy (force x distance) and heat energy.

2. Oxidation of Fat in the body.

Fat is three fatty acids (Stearic Acid, say) attached to a Glycerol backbone. As ~95% of the energy released from a fat is from the three fatty acids, I'm ignoring the Glycerol backbone, to keep the maths as easy as possible.  Stearic Acid is CH3(CH2)16COOH. I'm approximating it to 18(CH2), to keep the maths as easy as possible.

54(CH2) + 81(O2) → 54(CO2) + 54(H2O) + energy

Oxygen is inhaled. Carbon Dioxide is exhaled. Water is lost in breath, wee, poo, sweat & other bodily fluids.

As 81 molecules of Oxygen produce 54 molecules of Carbon Dioxide, the RER is 54/81 = 0.67

Note: The RER for fats is actually 0.7, as the Glycerol backbone is converted into Glucose by the liver. As the RER for  Glucose is 1, this raises the RER of my approximated fat by ~5%.

Converting molecular weights into their gram equivalents, 756g of approximated fat combines with 2,592g of Oxygen to produce 2,376g of Carbon Dioxide plus 972g of water plus ~28,468kJ of energy.

We lose weight by breathing, weeing, pooing, sweating etc. See also Majority of weight loss occurs 'via breathing'.

This doesn't invalidate Energy Balance, as the kcal/kJ values for foods merely represents the amount of chemical energy that can be released by oxidation of the various fuels in the foods. See Why Calories count (where weight change is concerned).

We gain weight by consuming fuels & water.

25 Temmuz 2014 Cuma

A *very* special dual-fuel car analogy for the human body that I just invented.

The human body is like a very special dual-fuel car.
From http://www.aa1car.com/library/alternative_fuels.htm

In this very special dual-fuel car:-

Glucose is represented by Ethanol, 'cos Ethanol is a carbohydrate, according to Robert Lustig ;-)
Glucose is C6H12O6. Ethanol is C2H6O. 3(C2H6O) = C6H18O3. It's not very close, but it'll do!

Caprylic acid is represented by Octane, 'cos fatty acids are hydrocarbons, don'tcha know? ;-)
Caprylic acid is CH3(CH2)6COOH and Octane is CH3(CH2)6CH3, which is actually pretty close.


Storage depots:

 

Carbohydrates:


For Ethanol, there's a large storage tank (≡ muscle glycogen) and a small storage tank (≡ liver glycogen). The contents of the large storage tank cannot be used to top-up the small storage tank, but the contents of the small storage tank can be used to top-up the large storage tank. The contents of the small storage tank are used to fuel a generator (≡ Hepatic Glucose Production) to keep the ECU (≡ brain) working at all times. The contents of the large storage tank are used to fuel the engine.


Fats:


For Octane, there's a large storage tank (≡ subcutaneous adipose tissue) and a small storage tank (≡ visceral adipose tissue). The contents of the small storage tank are used to produce hormones etc. The contents of the large storage tank are used to fuel the engine.


Substrate Utilisation:


When the car is driven at low speed, the engine burns mostly Octane (≡ RQ=0.7).
When the car is rapidly accelerating or driven at high speed, the engine burns mostly Ethanol (≡ RQ=1).
When the car is being driven intermediately, the engine burns a mixture of Octane & Ethanol.


Overeating/Undereating:

 

Carbohydrates:


If the large Ethanol storage tank becomes full, excess Ethanol overspills to the small storage tank.
If the small storage tank becomes full, a gizmo kicks-in and converts excess Ethanol into Octane (≡ De-Novo Lipogenesis).
It also shifts fuel usage of the engine towards Ethanol, to deplete Ethanol as quickly as possible.
If the small storage tank becomes full, the car malfunctions (≡ fatty liver).

Conversely, if the small storage tank becomes nearly empty, it shifts fuel usage of the engine towards Octane, to conserve Ethanol.


Fats:


If the large Octane storage tank becomes full, excess Octane overspills to the small storage tank.
If the small storage tank becomes full, the car malfunctions (≡ insulin resistance/metabolic syndrome/type 2 diabetes).

1 Haziran 2013 Cumartesi

Metabolic Inflexibility: What it really means.

Here's a picture from Metabolic Flexibility and Insulin Resistance.

The Metabolically-Inflexible (MI) & Insulin Resistance

Here's another picture.
Fig 2. ● = Metabolically-Flexible (MF). ○ = Metabolically-Inflexible (MI).
Salient points:
1) Excess serum FFA a.k.a. NEFA is bad.
2) Respiratory Quotient (RQ) a.k.a. Respiratory Exchange Ratio (RER) changes due to dietary changes are more sluggish in the MI than in the MF.
3) Under Insulin Clamp conditions, RQ/RER is lower in the MI than in the MF, due to impairment of glucose oxidation and non-oxidative glucose disposal.

I have posted this because of Danny Roddy's post Is Supplemental Magnesium A Surrogate For Thyroid Hormone? , which leads onto A Bioenergetic View of High-Fat Diets.

In the first article, Danny Roddy writes:-
"Additionally, taking magnesium while actively engaging in a diet or lifestyle that reduces the respiratory quotient (e.g., high-fat diet, light deficiency, excessive exercise) seems pretty silly. For example, as a rule, diabetics have a reduced respiratory quotient (Simonson DC, et al. 1988), tend to have higher levels of free fatty acids or NEFA (Kahn SE, 2006), and are often deficient in magnesium (De Valk HW, 1999)."

The second sentence (diabetics have a reduced respiratory quotient...and are often deficient in magnesium) seems to contradict the first sentence (...taking magnesium while actively engaging in a diet or lifestyle that reduces the respiratory quotient seems pretty silly).

Simonson DC, et al. 1988 is Oxidative and non-oxidative glucose metabolism in non-obese type 2 (non-insulin-dependent) diabetic patients.
"In conclusion, during the postabsorptive state and under conditions of euglycaemic hyperinsulinaemia, impairment of glucose oxidation and non-oxidative glucose disposal both contribute to the insulin resistance observed in normal weight Type 2 diabetic patients. Since lipid oxidation was normal in this group of diabetic patients, excessive non-esterified fatty acid oxidation cannot explain the defects in glucose disposal."

Impaired glucose oxidation with normal lipid oxidation lowers RQ/RER. Therefore, lower RQ/RER must be bad, right? Wrong. From the above study:-
"...euglycaemic insulin clamp studies were performed..."
Remember Salient point 3)? Simonson DC, et al. 1988 is an insulin clamp study, the results of which don't apply to free-living people (who aren't insulin clamped).

See also Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. RER/RQ increases & decreases with increases & decreases in exercise intensity. This is Metabolic Flexibility (MF). Sorry, Danny.